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It is the objective of this paper to present a model reduction tech-

nique developed for the integrated controls-structures design of flexible

structures. Integrated controls-structures design problems are typically

posed as nonlinear mathematical programming problems, where the

design variables consist of both structural and control parameters.

In the solution process, both structural and control design variables

are constantly changing; therefore, the dynamic characteristics of the

structure are also changing. This presents a problem in obtaining a

reduced-order model for active control design and analysis which will

be valid for all design points within the design space. In other words,

the frequency and number of the significant modes of the structure

(modes that should be included) may vary considerably throughout

the design process [1,2]. This is also true as the locations and/or

masses of the sensors and actuators change. Moreover, since the

number of design evaluations in the integrated design process could

easily run into thousands, any feasible order-reduction method should

not require model reduction analysis at every design iteration. In

this paper a novel and efficient technique for model reduction in the

integrated controls-structures design process, which addresses these

issues, is presented.

OBJECTIVE

• Develop a model reduction technique for use in the integrated

controls-structures design.

-->Address the problem of a changing structure: the number

and frequency of the significant modes may vary.

-->Address the problem of control system implementation:

sensor and actuator locations and masses.

-->Address computational efficiency issues.

PRECEDING PAGE la-A,%,_ NO-_, _-ILI_t_D

529



The approach presented in this paper is first to use a first-

order Taylor's Series approximation of the open-loop eigenvalues and

eigenvectors with the aid of their respective analytical derivatives with

respect to both the structural and control design variables. Then,

evaluating the significance of each mode through cost measures related

to its controllability and observability [3], the number and frequency

of the significant modes at the nominal design point, as well as the

number and frequency of modes that might become significant in a

prescribed neighborhood of the nominal point, are determined using

a worst-case scenario approach. If the current design is within the

prescribed neighborhood of the nominal design, the modes identified

in the above are used in the control design and analysis. However,

if the current design is outside the neighborhood, a single-point order

reduction is performed.

APPROACH

• Evaluate the significance of each mode through its controllability

and observability cost measures.

Use a first-order Taylor's Series approximation of the open-

loop eigenvalues and eigenvectors in a prescribed "linear"

neighborhood about a nominal design.

Identify the number and frequency of modes that may become

significant within a neighborhood of a nominal design using a

worst-case scenario approach.

• Perform "single-point" model reduction for design points

outside the "linear" neighborhood.
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The equations of motion for a flexible structure, in state-space

form, are shown below, where A, B, and C are the plant, the

actuator influence, and the sensor influence matrices, respectively.

The plant matrix, in general, is nonsymmetric and fully populated.

For a large flexible structure, the order of the initial model can be in

the thousands, which makes it unsuitable for design and analysis. The

classical approach for reducing the size of the problem is to introduce a

model reduction method to eliminate dynamics characteristics that are

outside the bandwidth of interest, hence reducing the computational

burden. This naturally leads to the question whether tile problem

can be reduced even further, i.e., are there modes within the

bandwidth that do not contribute much to the dynamic response? In

order to distinguish a significant mode from an insignificant mode, a

measure of modal significance must be adopted and compared. In this

paper, the controllability and observability cost measures presented in

[3] are used.

CONTROLLABILITY AND

OBSERVABILITY COST MEASURES

The equations of motion, in state-space form, are given as:

(1 = Aq + Bu

y=Cq

A measure of controllability and observability may be defined as:

i

Where OZci and aoi are measures of the closeness of the ith mode

w.r.t, the controllable (observable) range spaces, defined by
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Transforming the equations of motion from physical coordinates

to modal coordinates results in a plant matrix that is block diagonal.

Normalizing the modes of the structure for unity modal mass results

in 2 x 2 blocks of the form shown below. Due to this particular

block-diagonal nature of A, its eigenvectors have a special form as

well, such that there are complex conjugate vector pairs associated

with each 2 x 2 block. This considerably simplifies the expressions

for controllability and observability cost measures.

CONTROLLABILITY AND OBSERVABILITY

COST MEASURES (CONT'D)

If the modes of the structure are normalized to produce unity
modal mass, i.e.,

Xf MXj - {01i_ji#j

The plant matrix can be written in modal form as"

n

m

A1 0 0

0 -.. 0

0 0 A_

Ai's have a 2x2 diagonal block form:

[0 1 1Ai - -w 2 -2_iwi
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Because of this special form of the eigenvectors of A, it becomes

apparent that the controllability and observability cost measures do

not require full multiplication of the matrices and vectors, but rather

may be reduced to a series of 2 x 1 vector and 2 x 2 matrix

multiplications. The components of the 2 × 1 vector are the two

nonzero components of the eigenvectors of A, and the 2 x 2 matrices

are block diagonal components of the controllability and observability

grammians. In other words, the modal controllability and observability

cost measures decouple, i.e., they depend only on the corresponding

modal parameters.

CONTROLLABILITY AND OBSERVABILITY

COST MEASURES (CONT'D)

• Simplified expressions for the controllability and observability

cost measures are given as:

(2 ci

O_oi --

1 +
_iwi + wi _/1 - _2 j_ _ia;i + wi 11 - _2 j_

1 + _ +_ v/_- _ .i _ +_ v/_- _ i
Wci and Woi represent the ith 2x2 block on the diagonal of the

grammians Wc and Wo, respectively.
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The 2 × 2 block diagonal elements of the controllability and ob-

servability grammians may be obtained analytically. Here, the vectors

_i, 7di, and "(ri represent the input, displacement output, and rate

output influence coefficients, respectively. These solutions may then

be combined with the reduced expressions for the controllability and

observability cost measures yielding simplified modal cost measures,

Crci and O_oi, as shown below.

CONTROLLABILITY AND OBSERVABILITY

COST MEASURES (CONT'D)

Simplified controllability and observability grammians:

° 1

Wo_ [_+_G.y_ + _@y__- "__ _'Y___ __'_____.+ _'Y_'Y___ 1

Simplified modal controllability and observability cost

measures:

1 {1 }C_ci- 4(1 + w?)_i w_ + wi cT_i

1 {1+4_? T T }-o_= 2(_+ _?)_ _ __ + __
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The model reduction algorithm computes the sensitivity of the

open-loop eigenvalues and eigenvectors each time that the optimiza-

tion requests gradient information (gradient of the objectives and

constraints with respect to the design variables). Then, upper bound

values for the modal controllability and observability cost measures

a U and c_U are computed and compared with preset threshold values in

order to identify the significant modes for designs within the prescribed

neighborhood of the nominal design. Now, if an upcoming design is

within this neighborhood, these identified modes are used to form a

design model for control synthesis. However, if an upcoming design is

outside this neighborhood, a single-point model reduction is performed

to identify the significant modes for control design. This process is

repeated until the integrated design optimization converges.

MODEL REDUCTION ALGORITHM

EVALUATE OPEN-LOOP
EIGENSENSITIVlTIES

APPROX. OBJECTIVE
AND CONSTRAINT

FUNCTIONS

DETERMINE SIGNIFCANT MODES
FOR DESIGNS WITHIN "LINEAR"

NEIGHBORHOOD

(WORST-CASE MODEL)

k 4 ovEs
NO

USE WORST-CASEMoDELI

PERFORM "SINGLE-POINT"
MODEL REDUCTION

t
EXACT OBJECTIVE
AND CONSTRAINT

EVALUATIONS
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Consider the real symmetric structural eigenvalue problem, as

stated below, where K and M are symmetric positive semi-definite

stiffness and symmetric positive-definite mass matrices, respectively.

Differentiating the defining eigenvalue problem with respect to a

structural design variable, pj, gives expressions for both the eigenvalue

and eigenvector derivatives. Premultiplying by the eigenvector yields

a simple expression for the eigenvalue derivative. However, due to

the rank deficiency of the defining eigenvalue problem, the eigenvector

derivative cannot be uniquely determined from this expression.

STRUCTURAL EIGENSYSTEM (OPEN-

LOOP) SENSITIVITY ANALYSIS

Structural Eigenvalue Problem: (K- ,_iM)Xi -- 0

Eigenvalue Derivative: O-_ -- XT ( °Kopj_ AiOM) Xi

Eigenvector Derivative:

OXi _ OAi MXi - (OK(K AiM)
Opj -- Opj k,Opj

Note that (K- AiM) is rank deficient.
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Expressing the eigenvector derivative as a linear combination of

all the eigenvectors and substituting it into the defining eigenvector

derivative equation gives an expression for the particular solution, V_j.

Noting that the particular solution is mass-orthogonal with respect to

the eigenvector provides a set of linear constraints that may be used

to eliminate the singularity problems of the unconstrained expression.

The constant, Cij, may be obtained by differentiating the eigenvector

normalization condition XTMXi = 1. For a detailed development of

the eigensystem sensitivity equations, see [4].

STRUCTURAL EIGENSYSTEM

SENSITIVITY ANALYSIS (CONT'D)

A solution for the eigenvector derivative may be obtained by

expressing it as a linear combination of all of the eigenvectors

n

axL = _ CkjXk
Opj

k=l

k¢i

q- CijXi -- Yij q- CijXi

Where V/j and Cij are defined as follows:

Opj

Opj ]
0

OM
--1-xT --Xi

2 _ Opj
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Both modal controllability and observability cost measures, aci

and aoi, are functions of the design variables p. As the current design

moves away from the nominal design point, the number and frequency

of the significant modes measured by aci and Croi might change.

Consequently, if upper bound values, a U and a U, can be established

for the modal controllability and observability cost measures for design

points within a prescribed neighborhood of a nominal design, they may

be used to identify the modes that are currently significant and modes

that might become significant as the design optimization progresses.

MODAL COST APPROXIMATIONS

Compute upper bound values for the

observability cost measures if the new

neighborhood of the nominal design:

controllability and

design is within the

-->Find an upper bound value for the controllability cost
measure:

re>Find an upper bound value for the observability cost measure:

,nax( 1 F1-t-4_/2 T l]

p _cr°i(P) = 2(1 + co2(p))_i [_Tdi(P)Tdi(P) + wi(P)7"lri(P)Tri(P) J]
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Upper bound values for the modal controllability and observability

cost measures may be established by using a worst-case scenario

approach, wherein the maximum possible contribution from each term

is used in the computations. These terms involve functions of the

open-loop eigenvalues and the input and the output influence vectors

which are approximated by a first-order Taylor's Series expansion.

MODAL COST APPROXIMATION (CONT'D)

Obtain upper bound values
observabfllty cost measures

[ 2(o))} +ad(p) <t/(4_i) mpax{t/w_(p)(1 +w i

max p)_bi( p =-- o%i
p

for the modal controllability and

m_x{wi(P)/(1 + w_(P)) }]"

aio(P ) <_ [(4,_ +1)/(2,i)] { {m_tx [1/wi(p)(1 + w_ (p))] mpax {7_i(P)Tdi(P) } } }
+

Use a first-order Taylor's Series approximation for the open-loop
eigenvalues and the influence coefficients

_" °'°' I (oj- Ooj)
toi(p) ,_, ¢Oi(Po) -t- _=1"=Opj Poi

na O_bi IOi(o) _ ei(oo) + _.= --ooj .oj (pj - poi)

539



Upper bound values for terms in the modal controllability and

observability cost measures that involve the influence vectors _i,

7di, and ")'rimay be obtained by evaluating these terms at a design

point in the direction of the steepest ascent and at the boundary of

the neighborhood. Here, it is assumed that the coupling between

the influence vectors corresponding to different modes is small.

The remaining terms in the cost measures involve functions of the

open-loop eigenvalues. All but one of these functions of a;i have

no maximum. Only the function f* = _i(p)/(1 +_/2(p)) has a

maximum at wi(P) -- 1. Consequently, upper bound values for all

these functions except f* can be obtained by computing the maximum

value of these functions at the smallest and the largest possible values

of Cdi (_i L and _Ui ) within the prescribed neighborhood. As for f*,

if Col(p) -- 1 is within the prescribed neighborhood, then f_az = 1/2.

Otherwise, the same procedure as for other functions is used.

MODAL COST APPROXIMATION (CONT'D)

Upper bound value for the influence coefficient terms:
nd

 ,TCpo) ,,Coo)+ 2Z }poj +
j-=-i

?1d n d

Z _ [O'_/OoAT[O_/Ookl_gn{'_(oo)[a_°_/Oojl}sg,,{_r(po)[O,_/Ook]}oojook__
j=l k=l

Upper bound values for the scalar functions of mi may

obtained by computing these functions at cog and co/L.
nd

_,_(p)= _,_(po)- Z I°_/°pJlpoJ _
j=l

nd

,,,U(p)= _,,(po)+ F_,[o_,,/opjlpoj_
j=l

be
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The CSI Evolutionary Model is a laboratory testbed designed and

constructed at the NASA Langley Research Center for experimental

validation of the control design methods and the integrated design

methodology [5]. The Phase-Zero Evolutionary Model, shown in the

figure, consists of a 62-bay central truss, with each bay 10 inches

long, two vertical towers, and two horizontal booms. The structure is

suspended using two cables as shown. A laser source is mounted

at the top of one of the towers, and a reflector with a mirrored

surface is mounted on the other tower. The laser beam is reflected

by the mirrored surface onto a detector surface 660 inches above the

reflector. Eight proportional, bi-directional, gas thrusters provide the

input actuation, while collocated servo accelerometers provide output

measurements. An integrated controls-structures design of this test

article is sought.

To perform the integrated design, the structure was divided into

seven sections, three sections in the main bus, and one section each

for the two horizontal booms and two vertical towers. Three structural

design variables were used in each section, namely, effective cross-

sectional area of the longerons, the battens, and the diagonals, making

a total of 21 structural design variables.

STRUCTUR_4L DESIGN "v:&RL4BLES

• Structure is divided into seven sections

• The effective cross-sectional areas of longerons, battens and

diagonals are chosen as design variables

• Total of 21 structural design variables
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The static (or constant-gain) dissipative controller which employs

collocated and compatible actuators and sensors, and consists of

feedbacks of the measured attitude vector yp and the attitude rate

vector Yr using constant, positive-definite gain matrices Gp and Gr, is

used for feedback control. This controller is robust in the presence of

parametric uncertainties, unmodelled dynamics, and certain types of

actuator and sensor nonlinearities [6]. However, the performance of

such controllers is inherently limited because of their structure. Here,

two of the eight available actuators were used to generate persistent

white-noise disturbances, while the remaining six actuators were used

for feedback control. The static dissipative controller uses a 6 x 6

diagonal rate-gain matrix with no position feedback (since this system

has no zero-frequency eigenvalues, position feedback is not necessary

for asymptotic stability). Thus, in the integrated design with the static

dissipative controller, the total number of design variables was 27 (21

structural plus 6 control design variables).

CANDIDATE CONTROLLERS

Static Dissipative Controllers

u = -G,.yr

• Collocated sensors and actuators

• Positive definite gain matrices

• Robust in presence of model uncertainties

• May have limited performance

• Elements of the Cholesky-factor matrix of the rate gain matrix

are used as control design variables (no position feedback)

G,_- L,.LTr
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An integrated controls-structures design was obtained by minimiz-

ing the steady-state average control power in the presence of white-

noise input disturbances with unit intensity (i.e., standard deviation

intensity = 1 lbf.) at actuators No. 1 and 2 (located at the end

of the main bus nearest to the laser tower). A constraint was

placed on the steady-state rms position error at the laser detector

(above the structure) for reasonable steady-state pointing performance.

Additionally, the total mass of the structure was constrained to

facilitate a fair comparison with the phase-0 design. The six remaining

actuators were used in the control design, along with velocity signals

(required for feedback by the dissipative controllers) obtained by

processing the accelerometer outputs. Side constraints were also

placed on the structural design variables for safety and practicality

concerns. Lower bound values were placed on these variables to

satisfy structural integrity requirements against buckling and stress

failures, On the other hand, upper bound values were placed on these

variables to accommodate design and fabrication limitations.

DESIGN PROBLEM

Pose the integrated controls-structures design as a simultaneous

optimization problem

Minimize the average control power

J= Trace{E{uuT} }

subject to

Mtot _ Mbudget

Side constraints on the structural design variables to accommo-

date safety, reliability, and fabrication issues
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The controls-structures integrated design results are shown be-

low. The results indicate that the evaluation (fifty-mode) model and

reduced-order model converged to essentially the same final design.

This is a clear indication that the model reduction method presented

in this paper can handle possible discontinuities associated with the

changing dynamic characteristics of the evolving structure.

The controls-structures integrated design results were obtained

using the Automatic Design Synthesis (ADS) software package [7].

All solutions were computed using an interior penalty function method

with a Broyden-Fletcher-Goldfarb-Shanno method for the uncon-

strained subproblem.

INTEGRATED DESIGN RESULTS

EVAL. MODEL

REDUCED-ORDER

MODEL

CONTROL

POWER

2.64

2.57

RMS

POINTING

2.999

2.998

TOTAL MASS

1.896

1.918
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The table below presents a computational performance comparison
of the evaluation model and reduced-order model. The results

indicate that the model reduction scheme yielded approximately a

49 percent reduction in CPU time. This increased performance can

be attributed to CPU time reductions in both the closed-loop analysis,

as well as those gained by introducing open-loop eigenvalue/vector

approximations. It should also be noted that the model reduction

method required 8 percent more function evaluations to obtain an

optimal design. This may be attributed to inaccuracies induced by the

open-loop eigensystem approximations.

COMPUTATIONAL REQUIREMENTS

iii ii

EVAL. MODEL

REDUCED-ORDER

MODEL

CPU TIME *

(TOTAL)

28 hrs. 19 min.

14 hrs. 30 min.

CPU TIME

(AVG. PER

EVALUATION)

82.7 sec.

38.9 sec.

* SUN SPARC 2 workstation.
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The bar charts shown below present the resulting structural design

variables for both the full model and the reduced-order model in terms

of initial versus final design. The results indicate that the two methods

converged to basically the same final design.

STRUCTURAL DESIGN VARIABLES

Full Model Reduced-Order Model

0.4 O.4t_°_I I
;°ql_ I I _o_ _
:_°2_ _o.,

o.o

1o 15 20 $ !o i$ 2o
design variable design variable
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In the bar charts below, controllability and observability cost

measures for the first 20 modes are listed. The controllability and

observability cost measures are for a nominal point and the worst-case

values within a 5 percent perturbation from the nominal. Using the

worst-case scenario approach described earlier, the number of modes

retained for closed-loop analysis was increased from 36 to 38. This

chart also indicates the relative sensitivity of Olci and O_oiwith respect

to changes in the structural design variables. It can be observed

that the first three suspension modes (1-3) are the most controllable
and observable modes. However, the last two modes (5 and 6)

along with the first three flexible modes (7-9) are quite controllable
and observable as well. Moreover, it can be seen that modes that

are not significant at the nominal design point (modes 17 and 19)

are as sensitive to design perturbations as lower frequency modes,

and, therefore, might become significant as the design optimization

progresses. Although not shown, the same level of sensitivity was

found in modes 21 through 50. It should be noted that in this design

problem the sensors and actuators are collocated, thereby producing
values for the controllability and observability cost measures which

are similar, but different in scaling.

CONTROLLABILITY AND

OBSERVABILITY COST MEASURES

C_
C

Controllability Observability

8o0

o_o

200. 400

o.
2 4 5 8 10 12 14 16 18 20 2' 4 6 8 10 12 14 16 18 20

mode number
mode number

547



A novel and efficient method for model order reduction in the

integrated controls-structures design process has been developed. The

method uses a linear approximation of the open-loop eigenvalues

and eigenvectors and identifies, through a worst-case scenario, the

structural modes that are significant at a nominal design point along

with modes that might become significant as the optimization moves

the structural design variables within a prescribed neighborhood of

the nominal design point. Consequently, this approach can handle the

discontinuities that may hamper the integrated design optimization

process because of the evolving structure, i.e., the frequency and

number of significant structural modes can change at each design

iteration. Although in this paper modal controllability and observ-

ability cost measures were used to evaluate the significance of each

mode for inclusion in the control design model, the approach of linear

approximation and worst-case analysis can be used in conjunction

with other modal cost measures as well. Finally, further research

is required to identify proper threshold levels for controllability and

observability cost measures as well as to choose the size of the

prescribed neighborhood used in the linear approximation.

CONCLUDING REMARKS

A new and efficient method for model order reduction in the

integrated controls-structures design has been developed.

-->The method can handle the discontinuity problems that may

hamper the optimization process.

-->The method can be used in conjunction with other model

reduction techniques.

Further research is required in choosing the threshold levels

for controllability and observability, as well as the size of the

neighborhood for linear approximation.
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